Stochastic Optimization for Steady State Production Processes based on Deterministic Approximations
نویسندگان
چکیده
We consider steady-state production processes that produce a product and have feasibility constraints and metrics of cost and throughput that are stochastic functions of process controls. We propose an efficient stochastic optimization algorithm for the problem of finding process controls that minimize the expectation of cost while satisfying deterministic feasibility constraints and stochastic steady state demand for the output product with a given high probability. The proposed algorithm is based on (1) a series of deterministic approximations to produce a candidate set of near-optimal control settings for the production process, and (2) stochastic simulations on the candidate set using optimal simulation budget allocation methods. We demonstrate the proposed algorithm on a use case of a real-world heat-sink production process that involves contract suppliers and manufacturers as well as unit manufacturing processes of shearing, milling, drilling, and machining, and conduct an experimental study that shows that the proposed algorithm significantly outperforms four popular simulation-based stochastic optimization algorithms.
منابع مشابه
Optimizing Stochastic Temporal Manufacturing Processes with Inventories: An Efficient Heuristic Algorithm Based on Deterministic Approximations
This paper deals with stochastic temporal manufacturing processes with work-inprocess inventories in which multiple products are produced from raw materials and parts. The processes may be composed of subprocesses, which, in turn may be either composite or atomic, i.e., a machine on a manufacturing floor. We assume that machines’ throughput is stochastic and so are work-in-process inventories a...
متن کاملQuasi-steady-state approximations derived from the stochastic model of enzyme kinetics
In this paper we derive several quasi steady-state approximations (QSSAs) to the stochastic reaction network describing the Michaelis-Menten enzyme kinetics. We show how the different assumptions about chemical species abundance and reaction rates lead to the standard QSSA (sQSSA), the total QSSA (tQSSA), and the reverse QSSA (rQSSA) approximations. These three QSSAs have been widely studied in...
متن کاملStochastic Power Control for Time-Varying Long-Term Fading Wireless Networks
A new time-varying (TV) long-term fading (LTF) channel model which captures both the space and time variations of wireless systems is developed. The proposed TV LTF model is based on a stochastic differential equation driven by Brownian motion. This model is more realistic than the static models usually encountered in the literature. It allows viewing the wireless channel as a dynamical system,...
متن کاملA novel bi-level stochastic programming model for supply chain network design with assembly line balancing under demand uncertainty
This paper investigates the integration of strategic and tactical decisions in the supply chain network design (SCND) considering assembly line balancing (ALB) under demand uncertainty. Due to the decentralized decisions, a novel bi-level stochastic programming (BLSP) model has been developed in which SCND problem has been considered in the upper-level model, while the lower-level model contain...
متن کاملLongest Path in Networks of Queues in the Steady-State
Due to the importance of longest path analysis in networks of queues, we develop an analytical method for computing the steady-state distribution function of longest path in acyclic networks of queues. We assume the network consists of a number of queuing systems and each one has either one or infinite servers. The distribution function of service time is assumed to be exponential or Erlang. Fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017